Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Anja Nohe

Anja Nohe

University of Delaware, USA

Title: Identifying new targets to improve skeletal formation in human

Biography

Biography: Anja Nohe

Abstract

Humans rely on their skeleton during their lifespan for several crucial functions as diverse as body support, walking, and energy balance. Unfortunately, during aging the human skeleton loses bone mass and its function is impaired. This leads to diseases such as Osteoporosis. A woman’s risk of breaking a hip due to osteoporosis is equal to her risk of breast, ovarian and uterine cancer combined. And a man age 50 or older is more likely to break a bone due to osteoporosis than he is to get prostate cancer. For most bone diseases, new innovative treatments and therapeutics are needed. However, in order to develop these the formation of the skeleton and the skeletal changes in adults must be determined. Bone is a dynamic living tissue that hosts a variety of different cell types embedded into mineralized matrix. Bone morphogemetic protein 2 (BMP2) is a growth factor that drives stem cell differentiation and bone growth in vivo. However, it has several side effects, when being used in the clinic. Therefore therapeutics and treatmentsbased on the signaling pathway of BMP2 may show great potential to induce skeletal growth. Using a systems biology approach we modeled the BMP2 signaling pathway and defined key targets in the BMP2 signaling pathway. We confirmed their role using atomic force microscopy combined with fluorescent microscopy. Moreover, we developed a peptide that activates specific signaling pathway in vitro and in vivo. We showed that systemic injection of this peptide in mice causes increase in bone mineral density and mineral apposition rate as well as trabecular thickness. These results suggest that the peptide is a powerful mediator of skeletal growth and may be used to improve skeletal formation in adults.