Tso-Fu Mark Chang
Tokyo Institute of Technology, Japan
Title: Fabrication of high biocompatible Pt-nylon and Pt-silk composite materials by supercritical carbon dioxide-assited metallization method
Biography
Biography: Tso-Fu Mark Chang
Abstract
As the medical technology advances, the next-generation healthcare devices are urgently demanded. Implantable and wearable medical devices are the latest applications over the decades. Nickel, copper and aluminum are widely used in aforementioned medical devices because of the simple process and low cost, however, adverse reactions such as allergies and Alzheimer's disease might take place due to the releasing of the metal ions. A biocompatible electronic material, thus, becomes the most urgent demand. Platinum is considered to be the most promising material owing to its irreplaceable biocompatibility. Moreover, nylon and silk are the common materials used in clothes. The combinations of Pt with nylon and silk textiles are considered to be promising candidates for the medical devices. Electroless plating can put these composite materials into practice and further achieves homogeneous metallized-surface due to the low deposition rate. Typical electroless plating consists of pretreatment to clean and roughen the surface, catalyzation to embed the catalysts as a nucleation site into the substrate and the plating step for the metallization. In spite of the dominance of Pt, electroless plating of Pt remains less studied due to the difficulties in controlling the catalyzation step in the electroless plating process. An up-to-date technique of supercritical carbon dioxide (sc-CO2) assisted catalyzation is practiced in this study to overcome the instinct difficulty of Pt metallization. With the help of the sc-CO2, the Pt catalyst can be inlaid into the textile structure and uniform Pt coatings can be deposited on the textile.